

AZX Series

REGENERATIVE AC & DC Power Sources Single, Split and Three Phase Mode Silicon-Carbide Technology

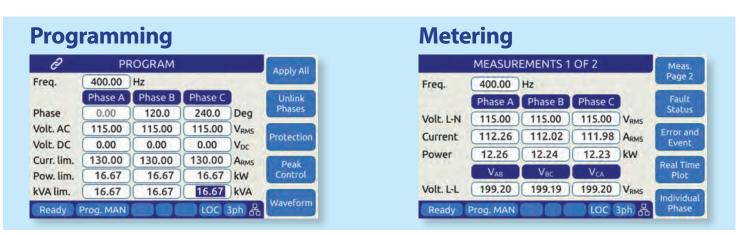
Extensive Features:

- Full Power Source and Sink Capability with Energy Recovery to the Utility Grid
- Full 100% of Current and Power Rating in both Source and Sink Mode
- Available Models 30kW or 50kW
- Parallel Configurations for Higher power
- Three Phase, Split Phase and Single Phase Output Modes
- AC, DC, AC+DC or DC+AC Output Capability
- Dual Constant Power Mode Voltage Ranges
- Frequency Range DC, 15 1000Hz or 1Hz - 15Hz in VLF mode
- Phase Angle Programming
- Precise Output Voltage and Load Regulation
- Metering of Volts, RMS Current, Peak Current, Apparent Power & True Power on all Phases
- Harmonic Measurements
- Scope Function to capture Voltage & Current waveforms
- Sine, Square, Triangle, Clipped Sine and Arbitrary Waveforms Selections
- Output Transient Programming
- Programmable Output Impedance
- Standard USB, LAN (LXI), RS232 & GPIB Interfaces
- High Speed Analog I/O for PHIL Applications Amplifier Mode (Option H)
- Electronic Regenerative AC or DC Load Mode (Option L)

30 kW to 400 kW

AC: 0-440 Vac L-N / 0-760 Vac L-L 3Ø DC: -650 Vdc to +650 Vdc Frequency: DC, 15 - 1000 Hz

"Innovating Solutions for Control and Monitoring of Power"


THE POWER OF EXPERTISE

Easy Front Panel Operation

Regenerative Grid Simulation Applications

Growing demand for renewable energy sources is fueling the need to test AC and DC products and systems that can recycle energy back to the grid. Regulatory and performance test requirements of these systems require an AZX Power Source for grid simulation.

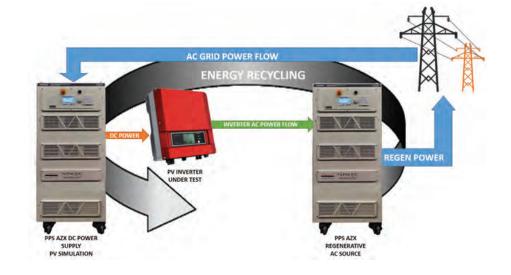
With extensive control over voltage, current, frequency, phase angles and transients, the AZX series supports testing of solar inverters (PV), energy storage systems (ESS), EV Batteries and Traction Systems as well as on-line UPS equipment with both AC and DC source and sink capabilities.

Toll Free: 1.800.854.2433

Avionics and Defense Power Test Applications

The wide output frequency range of the AZX Series Power Source allows its application to avionics and defense power applications requiring either 400Hz fixed or 360Hz to 800Hz wild frequency output. For emerging battery backed DC avionics power systems, multiple 270Vdc outputs can be used to simulate a split 540Vdc aviation DC power bus.

High power, three-phase configurations are available to meet regenerative or conventional power test demands. As needs change over time, additional units can be added easily to keep up with your test needs while protecting your original investment.



Grid Connected Power Generator Test Support

Testing wind or solar inverters for compliance with international regulations requires testing to both UL and IEC safety and EMI standard.

The optional PPSC Test Manager allows programming of sequences to address several of these tests such as Low Voltage Ride Through (LVRT) and anti-islanding.

With the available PPST Test Manager Windows software, creating country specific LVRT and other energy generating equipment tests is made easy.

Electric Vehicle Charger Test Support

The growing demand for electric vehicles necessitates the need to expand the EV Charging infrastructure both for public charging as well as in home charging. The AZX can play a key role in both AC connection testing and DC testing of On Boards Chargers - bidirectional Vehicle to Grid (V2G) or non-bidirectional - as well as high power public charging stations. The AC and DC capability of the AZX Series accommodates testing of a wide range of EV Charging solutions.

Regulatory Compliance Test System Support

The AZX Based EMC Compliance Test Systems from Pacific Power Source provide full compliance testing of product to IEC 61000-3 Emissions and IEC 61000-4 Immunity test standards for CE Compliance certification.

For bidirectional products, AZX based ECTS2 EMC test systems combine the benefits of the AZX Series with the Harmonics and Flicker measurements capabilities and immunity test software.

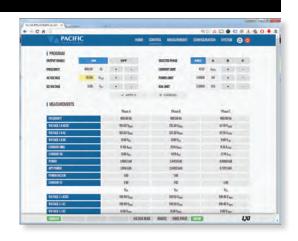
The full suite of ECTS2 Windows 10 EMC Test Software is compatible with the AZX Series. Supported standards include:

Emissions Tests:

IEC 61000-3-2, IEC 61000-3-3, IEC 61000-3-11, IEC 61000-3-12

Immunity Tests:

IEC 61000-4-11, IEC 61000-4-14, IEC 61000-4-17, IEC 61000-4-27, IEC 61000-4-28, IEC 61000-29, IEC 61000-4-34, Korean std KS C 9610-4-11 and KS C 9610-4-29



Powerful yet Easy to Use

Although AZX Series sources offer a wide range of operating modes and features, they are easy to operate through a front panel full color LCD display and soft key driven menus.

Top level menus are always available directly by pressing any of the five menu keys on the left of the display. Entering setup data is accomplished using the numeric keypad or the shuttle. Operating status is shown on screen using various colors to distinguish between setting, measurements and operator warnings, or error messages. Selectable language are **ENGLISH** or **SIMPLIFIED CHINESE**.

The built-in web server provides access to a large computer touch monitor based user interface with complete control over all AZX Functions and features without the need for any special software. The web browser based program and measurement screen is shown to the right.

Dual Voltage Ranges with Constant Power Profiles

The 3500AZX supports both low and high voltage ranges for either AC or DC mode. In AC mode, constant power is available from 52% of full scale voltage to 100% of full scale voltage as shown in Figure 1 & 3 below.

This allows higher currents to or from the EUT at lower than full scale voltage than would otherwise be possible. For voltage settings below 52% of full scale, current remains at max. rated current.

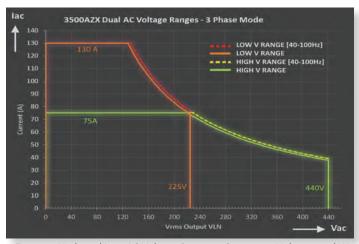


Figure 1: High and Low AC Voltage Ranges - Current vs. Voltage - 50kW

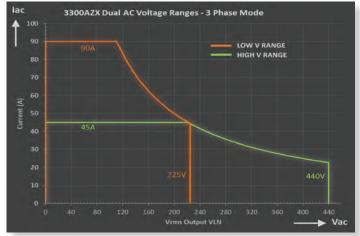


Figure 3: High and Low AC Voltage Ranges - Current vs. Voltage - 30kW

On 3500AZX models, the 440Vac range supports 75A at 230Vac from 40Hz to 100Hz for load currents with a crest factor below 1.8. This represents 3.5% increase in rated power to support Harmonics & Flicker testing to the max. required current per IEC61000-3-11 & IEC61000-3-12.

In DC mode, constant power is available from 50% of full scale voltage to 100% of full scale as shown in Figure 2 & 4 below.

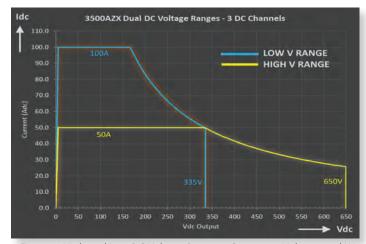


Figure 2: High and Low DC Voltage Ranges - Current vs. Voltage - 50kW

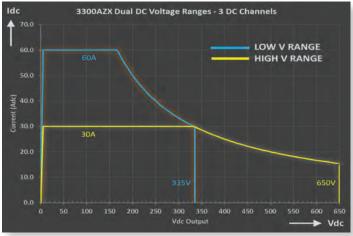
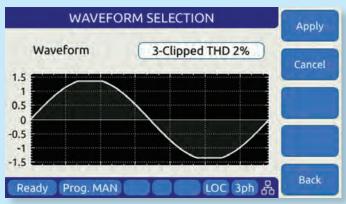
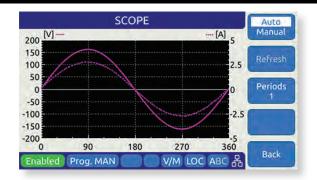



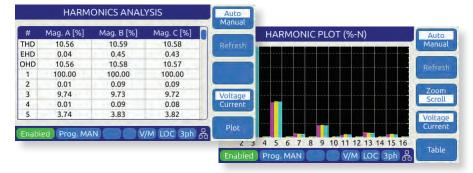
Figure 4: High and Low DC Voltage Ranges - Current vs. Voltage - 30kW

200 Selectable Arbitrary Waveforms


In addition to sine wave, the AZX Series offers multiple selectable AC waveforms such as clipped sine wave at various distortion levels, square, triangle and stepped squares. The operator can create arbitrary waveforms using Pacific Power's PPSC Studio Windows software or using a web browser and download these to the power source. A graphical representation (preview) of each waveform is shown on screen and a waveform name alias can be assigned to each so the operator can be sure the correct waveform is applied to the unit under test.

Clipped Sine Waveform Selection - Vthd = 2%

Capture Voltage & Current Waveforms


Built-in digital scope function captures voltage and current time domain signals, perfectly synchronized to the output frequency. Voltage and current displayed with accurate phase relationship. Display output waveforms on front panel or in Web browser.

Harmonics Measurements

Eliminate the need for an external power analyzer by measuring voltage and current harmonics. Harmonics information is displayed in either bar charts or detailed table format for easy viewing and analysis.

Data is displayed for each phase or all three phase simultaneously.

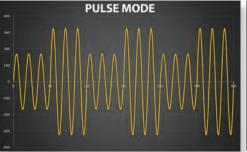
Touch Screen and WiFi Connection

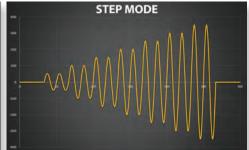
The standard external Monitor interface supports the use of an external touch screen monitor for display and control of the power source. This allows measurements to be monitored from across the lab or factory floor as needed.

Alternatively, a tablet or smart phone can be used to operate the power source using the built-in LXI[™] browser interface. Of course, extensive safety protocols are in place to prevent unauthorized access via WiFi or LAN connections.

Transient Programming for AC Power Test Applications

Voltage, Waveform and Frequency output transients are easily created from the front panel using an intuitive spreadsheet style data entry method. Data may be entered for a specific phase or for all three phases at the same time.

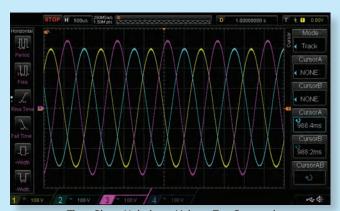

The AZX Series supports LIST, PULSE and STEP Mode Transient Types. The user can select the most appropriate type from the front panel or the web server interface. The image below illustrates the three modes graphically. Transients can be stored in non-volatile memory and easily edited as needed on screen.


If preferred, transient programming and execution can be also be accomplished using the available Windows control software.

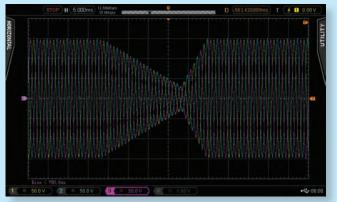
#	Freq	Volt AC	Volt DC	Dwell 📗	_
1	400.00	115.00	0.00	100.0	Step
2	400.00	100.00	0.00	10.0	эсср
3	400.00	115.00	0.00	100.0	-
4	400.00	100.00	0.00	10.0	Step Mode
5	400.00	115.00	0.00	100.0	Mode
6	400.00	100.00	0.00	10.0	Edit
7	400.00	115.00	0.00	100.0	Mode
8	400.00	100.00	0.00	10.0	

Transient Executing in View Mode

TRANSIENT LIST MODE

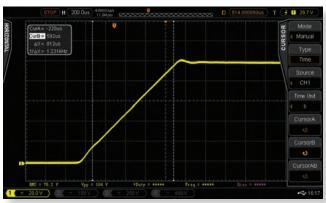

TRANSIENT PULSE MODE

TRANSIENT STEP MODE


The AZX Series' rich feature set supports a wide variety of AC power test applications. With full control over voltage, current, frequency, power, slew rates and phase angles, no test requirement is too challenging for the AZX to handle. This includes AC power compliance testing, transformer testing, appliance testing, DC charger testing, UPS testing and more. With scalable power configurations, test needs can grow over time without having to re-invest in new AC power sources as auxiliary units can be added to an existing AZX system at any time. The scope images shown here capture several examples of AC power test waveforms generated by an AZX.

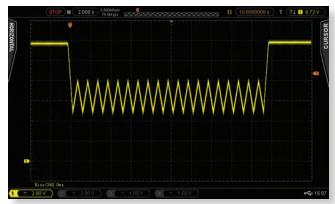
Three Phase Voltage Drop Test Captured

Three Phase Unbalance Voltage Test Captured



AC Transient Output Captured on Digital Scope

Transient Programming for DC Power Test Applications


The AZX Series doubles as a DC power supply with either a single DC output (FORM1) or up to three individual bipolar (4-Quadrant) DC outputs. Available voltage ranges are 335Vdc, 650Vdc and the same constant power range technology is used to provide a wide operating range for diverse DC voltage and current requirements. See Volt/Current Charts Figure 2 & 4 on page 4.

DC Voltage Ramp Up @ 100Vdc/ms programmed slew rate Captured

Transient programming covers DC levels and slew rates as is the case for AC applications but there is no frequency to program.

Programmable voltage slew rate settings may be used to control the rise and fall time of any DC voltage change. The scope images shown here capture examples of DC voltage ramps performed at a specific slew rate set on the AZX.

DC Voltage Transient Output Captured

Unique AZX Features & Benefits

The AZX Series is based on an advanced Silicon-Carbide technology platform that enables functionality not previously found on regenerative AC and DC source products from other manufacturers. These features help address a wide range of applications while at the same time providing a higher level of protection for the unit under test.

Regenerative 4-Quadrant Operation

The AZX Series is a full, four-quadrant AC and DC power source, targeted at renewable energy, Electric Vehicles and energy storage product development and test. Regenerative operation is available in both AC and DC mode or any combination of AC and DC power.

Scalable power from 30kW to 400kW using multiple AZX units covers a wide range of power applications.

Enhanced Protection Modes

Not only does the AZX offer programmable current limit protection mode, it goes beyond this by adding:

- Programmable Real Power Protection
- Programmable Apparent Power Protection
- Over Voltage Protection
- Over Temperature Protection

Optional Electronic Load Functionality

By adding the "L" option, the AZX Series can be used as a full featured regenerative AC and DC Load for testing AC power sources, Uninterruptable Power Supplies (UPS), EV Batteries or other AC or DC power generating equipment. This greatly expands the utility of the AZX Series. See page 8 for more information on the L Option.

Parallel Configurations

Multiple AZX units can be configured for parallel operation to meet higher power and current requirements.

Cost Savings

When sinking AC or DC power, power is returned to the AC Utility Grid rather then dissipated. This allows large power systems to be tested without the need for a high power utility connection, lower utility bills and lower HVAC cost, all saving both money and the environment.

Page 7 of 12

Regenerative Electronic AC & DC Load Mode (Option L)

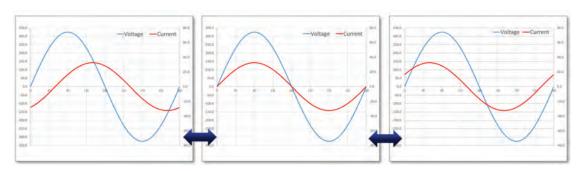
The **L Option** adds programmable, regenerative, electronic load mode for AC and DC applications to AZX Series power sources. In AC mode, either sinusoidal or non-linear load current waveforms are programmable using full arbitrary waveform capability. Load operating modes supported are Constant Current (CC), Constant Resistance (CR), Constant Power (CP) and Circuit Emulation (CE) mode. See diagram below.

Typical applications for AZX-L are Electric Vehicle Support Equipment (EVSE) such as public or in-home charging stations, hybrid PV inverters, Uninterruptable Power Supplies (UPS) and micro-grid related test applications. AC GRID POWER FLOW

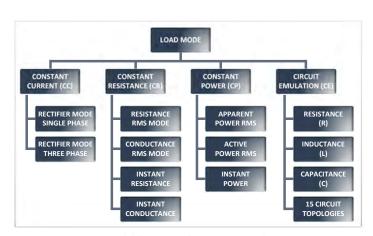
ENERGY RECYCLING

OC ROME FLOW

REGEN POWER


AZX.AC

GRID SMULLATION


LV CHARGER
UNDER TEST

AC LOAD

The AZX Load mode offers four main operating modes with both RMS and Real-time modes as well as a rich set of features in each mode. Programmable phase shift between input voltage and load current allows for ±1 or 0 Power Factor control.

Programmable Current Phase Shift for Power Factor Control

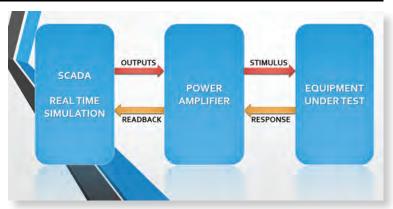
Available AZX Load Operating Modes

Features	CC Mode	CR Mode	CP Mode	CE Mode
User Waveform	✓	✓	✓	
Rectifier Waveform	✓	✓	✓	
Current Harmonics	✓			
Current Inter Harmonic	✓			
Sync Mode	✓	✓	✓	✓
Transient Programming	✓	✓	✓	
AC, DC & AC+DC Mode	✓	✓	✓	✓
Analog Input Programming	✓	✓	✓	

Available Features for each Load Mode

Mode	Circuit Diagram	Mode	Circuit Diagram
R	V(0) → Y _A	Series RLC	R
Series RL	V(I) (10 × V _a) V _a	R // Series RLC	V(1) (2) R. L.
Series RC	VIII (II) + V _{II} V _I	Series RL // Series RC	V(1) → R. È R. È L'S C →
R // Series RL	VID (2) + Via	R // Series RL // Series RC	W0 € K K K K K K K K K K K K K K K K K K
R // Series RC		Series RL (R//C)	W11 2000 R E E
R(L//C)	VIII VI VI VI VI VI C		
L(R#C)	VIII VIII VIII VIII VIII VIII VIII VII	Rectifier Single Phase	
C(R//L)	v ₁ v ₂ v ₃ v ₄ v ₄ v ₄ v ₄ v ₄ v ₄ v ₅ v ₅ v ₄ v ₅ v ₅ v ₆ v ₇ v ₈	Rectifier Three Phase	

Available Circuit Topologies in Circuit Emulation (CE) Mode


Auxiliary I/O Functions & Power HIL Support (Option H)

To support integrated test system design, the AZX Series offers a standard suite of analog and digital I/O functions.

The user can assign command macros or setting parameters to analog or digital I/O pins as needed. This provides a unique level of customization for putting together sophisticated test stations.

H Option

By adding the high speed analog interface (H Option), the AZX can be used as an amplifier for PHIL Applications. This analog interface provides high speed input for controlling frequency, voltage or current and waveshape. Voltage and Current output capture signals are returned to the simulation system. These analog I/O lines can be connected to most commercially available HIL systems.

Multi-Unit Parallel Configurations for Higher Current & Power

The AZX Series was designed to allow paralleling of multiple units to create larger power systems. Two or more AZX Cabinets can be paralleled and synchronized to create high power regenerative test systems. The table below shows single cabinets and available standard parallel 3500AZX configurations.

Note: Parallel combinations of 3300AZX and 3500AZX are supported as well and can be ordered as individual units.

MODEL	Output Phase Modes	Rated Power ¹ AC / DC mode	High Voltage Range Vac L-N / Vdc	Max. Current High Vrange 3 Phs / Split / 1 Phs	Low Voltage Range Vac L-N / Vdc	Max. Current ² Low Vrange 3 Phs / Split / 1 Phs	No. of Cabinets
3300AZX	3, 2 & 1	30 kVA 30 kW		45 / 68 / 135 Arms 30 / 45/ 90 Adc		90 / 117 / 270 Arms 60 / 90 / 180 Adc	One
3500AZX	3, 2 & 1	50 kVA 50 kW		75 / 75 / 225 Arms 50 / 50 / 150 Adc		130 / 130 / 390 Arms 100 / 100 / 300 Adc	One
31000AZX	3, 2 & 1	100 kVA 100 kW	0 ~ 440 Vac / 0 ~ ±650 Vdc	150 / 150 / 450 Arms 100 / 100 / 300 Adc	0 ~ 225 Vac / 0 ~ ±335 Vdc	260 / 260 / 780 Arms 200 / 200 / 600 Adc	Two
31500AZX	3, 2 & 1	150 kVA 150 kW		225 / 225 / 675 Arms 150 /150 / 450 Adc		390 / 390 / 1170 Arms 300 / 300 / 900 Adc	Three
32000AZX	3, 2 & 1	200 kVA 200 kW		300 / 300 / 900 Arms 200 / 200 / 600 Adc		520 / 520 / 1560 Arms 400 / 400 / 1200 Adc	Four
Higher	For parallel system configurations above 200kVA/kW up to 400kVA/kW, contact factory						

Table 1: Model Number, Power Ratings & Current Ratings

Note 1: Rated power shown is for Three Phase or Single Phase mode operation. For Split Phase mode, rated power is 30kVA/30kW for the 3300AZX and 33kVA/33kW for the 3500AZX.

www.pacificpower.com sales@pacificpower.com Toll Free: 1.800.854.2433 Tel: +1.949.251.1800 Page 9 of 12

Technical Specifications

OUTPUT	SPECIFICATI	ON		
Power				
Single Phase Mode				
Three, Split Phase Mode	See Table 1 on p	page 9		
Voltage				
Modes	AC, DC, AC+DC, DC+AC			
	AC Mode	DC Mode		
Low Voltage Range	0-225 VLN / 0-390 V LL	0 - 335 Vdc		
High Voltage Range	0-440 VLN / 0-760 VLL	0 - 650 Vdc		
Programming Resolution	0.01 V			
Accuracy	±0.1%			
Waveforms	Sine, Square, Tri	iangle,		
(200 Max.)	Clipped (THD), A	rbitrary		
DC Offset	< 20 mV			
Harmonic Distortion (Vthd)	< 100 Hz: < 0	.2%		
(full, resistive load, up to 440Vrms L-N)	100~1000 H	Hz:		
·	< 0.2% + 0.125%	/100Hz		
Output Noise - Low V Range	< 250 mV RI	MS		
High V Range	< 500 mV RI	MS		
Load Regulation	± 0.02% (CSC N	Лode)		
Line Regulation	< 0.1% for 10% Line Change			
Voltage Sense	External Sense, max. v			
J	5% F.S.	, ,		
Voltage Slew Rate ¹	Programmable, 12.0	OV/μs max.		
Isolation				
Any Output Terminal to Chassis	1000 Vpk / 100	00Vdc		
Frequency				
Range	DC, 1 – 15Hz ⁽²⁾ , 15 -	– 1000 Hz		
Programming Resolution	0.01 Hz			
Accuracy	± 0.005% / 50	ppm		
Current (See Figures 1 through 4 and Table 1)				
Ranges	See Table			
Max. AC Peak Current	Low Vac Range: 3			
per Phase, 2 or 3 Phase Mode	High Vac Rang: 1			
	(Applies to 3300AZX 8	2 3500AZX)		
Programming Resolution	0.01 Arms	5		
Accuracy	0.25% F.S.			
Current Protection (CP)	Constant Current (CC)			
Modes	or Output Trip	(CV)		
Phase Angle (In 3 and 2 Phase M				
Programmable Phase (B, C)	0 - 359.9°			
Resolution	0.1°			
Accuracy	±0.35° / ±0.1° Phase	Reg. Mode		
Programmable - 3 Phase Mode				
Resistance (R) RT / RMS Modes	±1.000 Ohm / ±10			
Inductance (L) RT / RMS Modes	0 to 50 μH / 0 to 2	2000 μΗ		

Footnotes:

1: Specified for 10%-90% or 90%-10% of Full scale voltage

2: Extends down to 1.0 Hz in Very Low Frequency (VLF) Mode. Derating applies

PROTECTION	SPECIFICATION
Types	RMS Current, DC Current, Peak Current, Peak Voltage, True Power, Apparent Power, Internal Over Temperature, Advanced protection modes for regenerative devices

TRANSIENTS	Specification
Programming	
No. of Entries	200 Steps / 400 segments
Modes	LIST, PULSE, STEP
Parameters	Frequency, Volt AC, Volt DC, Waveform, Ramp Time, Dwell Time
Dwell Time Range	0.1 - 10000000.0 msec
Time Resolution	0.1 msec
Edit Modes	Add at end, Insert before, Delete
Execution	
Run Control	Run from step # to step #
	Run, Step, Restart, Stop
Execution Modes	Normal, Debug
Program Storage	
Non-volatile	100 Programs + Transients

MEASUREMENTS	SPECIFICATION	
AC Voltage (Vrms)		
Single or Parallel Cab: Range	0 – 440 VLN / 0-760 VLL	
Resolution	0.01 V	
Accuracy	± 0.1% F.S.	
Frequency (Hz)	± 0.1 /01.5.	
Fundamental Range	1 Hz - 1000 Hz	
Resolution	0.01 Hz	
Accuracy	± 0.1% Rdg	
AC Current (Arms) - Single Cabi	<u> </u>	
Range ⁵		
Resolution		
Accuracy ²		
Current Crest Factor	± (0.23 /0 ± 1 (N112) 0.23 /0) 1.3.	
Range	1.00 - 5.00	
Resolution	0.01	
Accuracy ²	± 2.0% F.S.	
AC or DC Power (W) - Single Cal	77.7	
Range ⁵	0 - 50 kW	
Resolution	0.01 kW	
Accuracy ²	± 0.75 % F.S.	
Apparent Power (VA) - Single C		
Range ⁵	0 - 50 kVA	
Resolution	0.01 kVA	
Accuracy ²	± 0.75 % F.S.	
Power Factor	± 0.75 /01.5.	
Range	0.00 - 1.00	
Resolution	0.01	
DC Voltage (Vdc)	0.01	
Range ³	0 – 650 Vdc	
Resolution	0.01 V	
Accuracy	± 0.1% F.S.	
DC Current (Adc) - Single Cabine		
Range ⁵		
Resolution	0.01 Adc	
Accuracy ⁴	± 0.25% F.S.	
Accuracy	± 0,∠3 /0 1,3,	

Footnotes:

- 1: Current and Power Ranges are for 3300AZX and 3500AZX models
- 2: For RMS Currents above 2.0 A
- 3: Range = 0 1000 Vdc (w/Floating Neutral) or 0 1240 Vdc (w/Grounded Neutral)
- 4: For DC current levels above 1.0 A

Toll Free: 1.800.854.2433

5: Current and Power Ranges scale with no. of units for parallel systems

Technical Specifications (continued)

WAVEFORM CAPTURE	SPECIFICATION
Parameters	VLN-A, VLN-B, VLN-C,
	VLL AB ,VLL AC ,VLL BC ,IA, IB, IC
Max. Sample Rate	500 ksps
Samples/cycle	1024 (512 in UPC Compatibility mode)
Record Length	1 Period of fundamental Frequency
Bandwidth	100 kHz @ 500 ksps

HARMONICS MEAS.	SPECIFICATION
Parameters	VLN-A, VLN-B, VLN-C, VLL AB ,VLL AC ,VLL BC ,IA, IB, IC
Harmonics Range	H1 ~ H50
Accuracy – Amplitude	± 1.0 % of RMS Reading
Phase Angle Range	0 ~ 359.9
Accuracy - Phase Angle	2 μsec
Bandwidth	100 kHz @ 500 ksps
Display Modes	Table format, Graph Format

AC INPUT (Per Cabinet)	SPECIFI	CATION	
Mains Voltage Form	4 Wire, L1, L2, L3 and PE		
Frequency	47 - 63 Hz		
400V Input Setting (-4)	3300AZX	3500AZX	
Output Power Rating	30.0 kW	51.75 kW	
Input Voltage Range	380 ~ 400'	Vac ± 10%	
Nominal Phase Current ¹	54 Arms	90 Arms	
Max Current @ Low Line ¹	60 Arms	100 Arms	
Peak Inrush Current ²	< 130 Apk	< 130 Apk	
Input Power Factor	> 0.99 @ Full Load		
Current THDi	< 2	2%	
Efficiency	89 %	90 %	
480V Input Setting (-8)	3300AZX	3500AZX	
Input Voltage Range	480Vac	± 10%	
Nominal Phase Current ³	43 Arms	72 Arms	
Max Current @ Low Line ³	47 Arms	80 Arms	
Peak Inrush Current ²	< 110 Apk	< 110 Apk	
Current THDi	< 2	2%	
Input Power Factor	> 0.99 @	Full Load	
Efficiency	89 %	90 %	

Footnotes:

- 1: For nominal 3ø, 380V input voltage. Low line voltage is 342V
- 2: Ipeak Inrush = @ nominal input voltage 3: For nominal 480V input voltage. Low line voltage is 432V.

ENVIRONMENTAL	SPECIFICATION	
Cooling	Variable speed fan cooled, front intake, top	
	exhaust	
Temperature Operating	0 to 40 °C / 32 to 104 °F	
Storage	-20 to 70 °C / -4 to 158 °F	
Humidity	< 80%, non-condensing	
Altitude	2000 m / 6500 feet	

INTERFACES	DESCRIPTION
Remote Control	
USB	Device Type B
RS232	1200 - 921600 baud
LAN extensions for instrumentation	LXI compliant, Ethernet, RJ45, TCP/IP Proto- col, Telnet Protocol Command Line
GPIB	IEEE488,1, IEEE488.2 (2003 incl., NI HS488) IEC 60488-1, IEC 60488-2 (2004) Functions: SH1, AH1, T6, L3, SR1, RL1, DC1, DT1
WiFi	

SYSTEM FEATURES	DESCRIPTION
DISPLAY	
Туре	Full Color, Touch LCD Display
Size	4.3" Diagonal
Resolution	480 x 272 pixels
USB Ports	2 Front Panel, 1 Rear Panel, Type A
SD Card	32 GB max. Capacity
Video Output	Monitor Out, Front Panel

ANALOG I/O	SPECIFICATION
Analog Inputs (4)	
Modes	Amplifier, Amplitude Modulation, Int +
	Ext Input Summing
AI1, AI2, AI3	Programmable setting phase A, B, C
Al4	Frequency
Range	0 -10 Vdc for 0 - F.S.
Accuracy	± 0.1% F.S.
Input Impedance	5 kOhm
Analog Outputs (4)	
AO1, AO2, AO3	Voltage Meas. phs A, B, C
AO4	Power Measurement Total
Range	0 - 10Vdc for 0 - F.S.
Accuracy	± 0.1% F.S. into > 5 kOhm load
Output Impedance	5 kOhm
Connector Type	DB25, Rear Panel

DIGITAL I/O	SPECIFICATION	
Digital Inputs (6)		
Fixed (3)	Remote Inhibit, Transient Trigger, Phase Sync	
User Programmable (3)	DI1, DI2, DI3	
Input Levels	Low < 0.4V, High > 2.0V	
Digital Outputs (6)		
Open Collector, Fixed (2)	Relay Control FORM, Relay Control T Option	
TTL, Fixed (2)	Output Relay/Transient /Function Strobe Phase Sync	
User Programmable (2)	DO1, DO2	
Output Levels	Low < 0.4V, High > 4.6V	
Connector Type	DB25, Rear Panel	

MECHANICAL	SPECIFICATION
Dimensions	
HxWxD	59.8" x 24.0" x 31.9"
	1520 x 610 x 810 mm
Shipping H x W x D	71" x 32" x 44"
	1800 x 810 x 1120 mm
Weight	
Net	517 Kg / 1140 lbs
Shipping	592 Kg / 1305 lbs

REGULATORY	SPECIFICATION	
Safety	IEC 61010-1:2010 (Edition 3)	
EMC		
Emissions Standard	EN 55011:2009+A1:2010	
Immunity Standard	EN 61000-4-2, -3, -4, -5, -6, -8, -11	
Product Category	EN 61326-1:2013 (Measurement, Labora-	
	tory and Control Equipment)	
Approvals	CE Mark	
RoHS (DIRECTIVE 2011/65/EU)		
Product Category	EN50581:2012	

Ordering Information

Standard Cabinet Systems

Single Cabinet Systems

3300AZX

■ 3500AZX

Parallel Cabinet Systems¹

- □ 31000AZX
- 32000AZX
- 31500AZX

Selectable Input Voltage (V_{IN}) identifier

- \blacksquare -4 380~400Vac, 3Ø ± 10%, 47-63Hz
- ☐ -8 480Vac, 3Ø ± 10%, 47-63Hz

Export Version

E Append "E" postfix

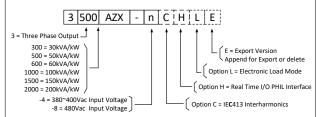
Options

- ☐ C IEC413 Interharmonics Append "C"
- H Real Time I/O for PHIL Append "H"
- L Electronic Load Mode Append "L"

Order Example

3500AZX-4CL

- Cabinet, 50 kW, 3-Phase, AC & DC Regenerative Power Source with USB, RS232, LAN, GPIB & AUX I/O
- Add options C and L
- 380~400Vac, 3 Phase Input Voltage


Note 1: Contact Factory for higher power AZX system configurations.

Typical Delivery Items

- AC & DC Power Source
- English Manuals in PDF Format
- Certificate of Compliance

AZX Model Configurator

Dashed boxes are optional.

Software Options

Windows 10 Software - 64 Bit

- PPSC Studio Control Software
- PPSC Test Manager
- Epts_Gui IEC61000-4-11, IEC61000-4-27, IEC61000-4-29, IEC61000-4-34
- Ects_4xxGui IEC61000-4-14, IEC61000-4-17, IEC61000-4-27p, IEC61000-4-28

Test Sequences - Avionics (Requires PPSC Test Manager)

- ABD0100.1.8 Airbus A380, AC & DC Power Groups
- ABD0100.1.8.1 Airbus A350, AC & DC Power Groups
- AMD24C Airbus A400M, AC & DC Power Groups
- Boeing 787B3-0147 B787, AC & DC Power Groups
- MIL-STD704 US DoD, AC & DC Power Groups
- RTCA-DO160 Section 16, AC & DC Power Groups

Test Sequences - Other

- IEC Test Suite Includes IEC61000-4-11p, IEC61000-4-13, IEC61000-4-14, IEC61000-4-17, IEC61000-4-27p, IEC61000-4-28, IEC61000-4-29p and IEC 61000-4-34p
- MIL-STD 1399-300B US DoD, Shipboard Power, AC Power Groups

Service and Support

Pacific Power Source's customer support is second to none. Our Customer Support Program provides the training, repair, calibration, and technical support services that our customers value. In addition to receiving the right test equipment, our customers can also count on excellent support before, during and after the sale. With company owned support and service centers around the world, support is never far away. Complete calibration and repair services are offered at our US, European and Chinese manufacturing facilities (see contact info below). Calibrations are to original factory specifications and are traceable to NIST (National Institute of Standards and Technology).

NORTH AMERICA

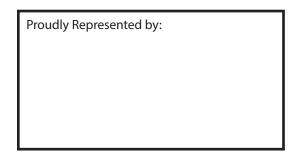
Pacific Power Source, Inc. Irvine, USA

Phone: +1(949) 251-1800 Fax: +1 (949) 756-0756

Email: info@pacificpower.com Web: www.pacificpower.com

EUROPE

Pacific Power Source Europe GmbH. Kappelrodeck, Germany


Phone: +49 7842 99722-20 Fax: +49 7842 99722-29

Email: info@pacificpower.eu Web: www.pacificpower.eu

CHINA

PPST Shanghai Co. Ltd. Shanghai, China

Phone: +86-21-6763-9223 Fax: +86-21-5763-8240 Email: info@ppst.com.cn Web: www.ppst.com.cn

2802 Kelvin Avenue, Suite 100 Irvine, CA 92614 - 5897 USA Phone: +1 949.251.1800 Fax: +1 949.756.0756 Toll Free: 800.854.2433 E-mail: sales@pacificpower.com Web: www.pacificpower.com

 $@\ 2020\ Pacific\ Power\ Source, Inc.\ All\ information\ subject\ to\ change\ without\ notice.\ AZX-CAT\ 0122$